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Abstract
The research about scheduling with calibrations was initiated from the Integrated Stockpile Evaluation
(ISE) program which tests nuclear weapons periodically. The tests for these weapons require
calibrations that are expensive in the monetary sense. This model has many industrial applications
where the machines need to be calibrated periodically to ensure high-quality products, including
robotics and digital cameras. In 2013, Bender et al. (SPAA ’13) proposed a theoretical framework for
the ISE problem. In this model, a machine can only be trusted to run a job when it is calibrated and
the calibration remains valid for a time period of length T , after which it must be recalibrated before
running more jobs. The objective is to find a schedule that completes all jobs by their deadlines
and minimizes the total number of calibrations. In this paper, we study the scheduling problem
with calibrations on multiple parallel machines where we consider unit-time processing jobs with
release times and deadlines. We propose a dynamic programming algorithm with polynomial running
time when the number of machines is constant. Then, we propose another dynamic programming
approach with polynomial running time when the length of the calibrated period is constant. Also,
we propose a PTAS, that is, for any constant ϵ > 0, we give a (1 + ϵ) - approximation solution with
m machines.
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1 Introduction

The original motivation for scheduling with calibrations came directly from the Integrated
Stockpile Evaluation (ISE) program which tests nuclear weapons periodically [6]. The tests
for these weapons require calibrations that are expensive. This motivation can be extended
to the scenarios where the machines need to be calibrated periodically to ensure high-quality
products, such as robotics and digital cameras [17, 4, 27]. In this model, a machine must be
calibrated before it runs a job. When the machine is calibrated at time t, it stays calibrated
for a time period of length T , after which it must be recalibrated to run more jobs. We
refer to the time interval [t, t + T ] as the calibration interval and no job can be started or be
processed on a machine outside the times sitting in a calibration interval. In the ideal model,
calibrating a machine is instantaneous, meaning that the machine can run a job immediately
after being calibrated and the machine can switch from uncalibrated to calibrated status
instantaneously. The objective is to assign the jobs to the machines using the minimum
number of calibrations.
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20:2 Revisit the Scheduling Problem with Calibrations

Methodologies have been introduced about performing a calibration in different scenarios
[20, 23, 26], as well as determining the time period of a calibration [16, 18]. On the other hand,
there is quite a lot of research work about scheduling algorithms [5]. In 2013, Bender et al. [3]
proposed a theoretical framework for scheduling with calibrations. They considered unit-time
jobs with release times and deadlines, aiming at minimizing the number of calibrations. In
the single-machine setting, they proposed a greedy, optimal, polynomial-time algorithm
called Lazy-Binning where the algorithm delays the start of a calibration interval for as long
as possible, until delaying it further would make it impossible to find a feasible schedule.
For the multiple machine setting, they proposed the Lazy-Binning algorithm on multiple
machines and showed it is a 2-approximation algorithm, while the complexity status still
remains open.

Later, Fineman and Sheridan [12] considered the non-preemptive jobs with non-unit
processing times and generalized the problem with resource-augmentation [15] in the sense
that an approximate solution can be obtained if we speed up the machines and/or have
more machines. They worked on multiple machine setting without preemption, showed the
relationship of the problem with the classical machine-minimization problem [19] and proved
that if there is an s-speed α-approximation algorithm for the machine-minimization problem,
then it would give an s-speed O(α)-machine O(α)-approximation solution for the calibration
minimization problem.

Angel et al. [2] developed different results on several generalizations of this problem. They
considered the jobs of non-unit processing times on a single machine with preemption, and
proposed an optimal greedy algorithm, which extends the idea of the Lazy Binning algorithm.
Also, they extended the model to allow many types of calibrations where different types of
calibrations have different interval lengths and costs, and proved that the problem is NP-hard.
At last, they considered a more realistic case where calibrating a machine takes a fixed
amount of time, and proposed a dynamic programming approach to solve the problem. Chau
et al. [7] showed a 3-approximation polynomial time algorithm when jobs have unit processing
times. Also, they showed a (3/(1 − ε))-approximation pseudo-polynomial time algorithm
and a (18/(1 − ε))-approximation polynomial time algorithm for the arbitrary processing
time case. Chau et al. [9] showed that the scheduling problem with batch calibrations can
be solved in polynomial time. Also, they proposed some fast approximation algorithms for
several special cases. Chen and Zhang [11] considered online scheduling with calibration while
calibrating a machine will require certain time units. They gave an asymptotically optimal
algorithm for this problem when all the jobs have unit processing times, and improved the
competitive ratio for the special case that calibrating a machine is instantaneous.

While the above works are about minimizing the number of calibrations, Chau et al. [8]
worked on the trade-off between weighted flow time and calibration cost for unit-time jobs.
They integrated the objective function with these two criteria, and gave several online
approximation results on different settings and also a dynamic programming method for
the offline problem. Wang [24] worked on the scheduling of minimizing total time slot
cost with calibration requirements. They considered jobs of identical processing times, and
proposed three different dynamic programs for different scenarios. Chen et al. [10] studied the
scheduling problem with multiple types of calibrations and proposed constant approximation
algorithms for several types of calibrations.

In this paper, we work on the original problem proposed by Bender et al. [3] in which
jobs have unit processing times with release times and deadlines. We abbreviate this
problem as P |rj , pj = 1, dj , T |#Calibrations with machine calibrations, where we adopt the
classical three-field notation in scheduling of Graham et al. [13]. We propose two dynamic
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programming approaches to solve the problem with polynomial running time when (i) the
number of machines is constant, (ii) or the valid length of a calibration is constant. Moreover,
when the number of machine and the valid length of a calibration are both inputs, we present
a PTAS. Our results are summarized in Table 1. It is worth noting that the currently
best result for this problem is a 2-approximation algorithm by Bender et al. [3], and the
complexity status still remains open.

Table 1 A summary of the results of scheduling with calibrations on multiple machines.

Algorithm Approximation Ratio Time Complexity Remark
Section 3 1 O(n8+6m) m is constant, T is input
Section 4 1 O(n8m3T ) m is input, T is constant
Section 5 1 + ϵ O(n17+18⌈1/ϵ⌉) Both m, T are input

Bender et al. [3] 2 Poly(n, m) Lazy-binning approach

Transforming a dynamic programming formulation into a PTAS (polynomial time approx-
imation scheme) has been studied decades ago [14, 21]. Woeginger [25] proposed a general
technique and gave some conditions to identify whether a dynamic programming formulation
could be transformed into an FPTAS. Schuurman and Woeginger [22] summarized the meth-
ods into three main categories, structuring the input, structuring the output and structuring
the execution of an algorithm.

For our problem, it is not straightforward to directly apply Schuurman and Woeginger’s
[22] method to get an FPTAS. Therefore, in this paper, we show a different approach to
transform the dynamic program formulation into a PTAS, which lies in the category of
structuring the output. In Section 2 we present the structure of an optimal schedule of
this problem. Then in Section 3 we propose a dynamic programming approach to solve the
problem. In Section 4 we propose another dynamic programming approach for the case when
T is constant. In Section 5 we give a PTAS algorithm. We conclude our results in Section 6.

2 Formulation

We are given a set J of n jobs, where each job j ∈ J has release time rj , deadline dj and
processing time pj = 1. We have m identical parallel machines which can be trusted to run
a job only when calibrated. The calibration remains valid for a time period of length T . The
objective is to find a schedule that completes all jobs before their deadlines such that the
number of calibrations is minimized. We assume that all the input are non-negative integers.

A feasible solution includes the schedule of calibrations (i.e., when to start a calibration
on each machine) and the schedule of jobs (i.e., when and on which machine to start a job).
We assume all the inputs are integers and both calibrations and jobs should start at times
which are also integers. We denote the time interval (t − 1, t] as time slot t and t is called
active if some job is scheduled in this time slot. We sort the jobs by non-decreasing order of
their deadlines, and non-decreasing order of release times if two or more jobs have the same
deadline. The jobs are indexed from 1 to n, and any job j ∈ J has index j ∈ [1, n]. As a
matter of fact, once the schedule of calibrations is fixed, the schedule of jobs can be obtained
by applying the classical Earliest-Deadline-First (EDF) scheduling algorithm, in which for
any time slot, the job of the earliest deadline has the highest priority to be considered to
schedule whenever a machine is available (i.e., calibrated).

ISAAC 2024
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Figure 1 An illustration for Lemma 1.

▶ Lemma 1 (EDF). There exists an optimal schedule such that for any two jobs i, j with
i < j, if ri ≤ tj then ti ≤ tj where ti, tj are the corresponding starting times of job i and j

in the optimal schedule respectively.

Proof. As job i has smaller index than job j, i.e., i < j, we have di ≤ dj . Suppose ti > tj

in the optimal schedule, and then we have ri ≤ tj < ti < di ≤ dj , which implies that by
swapping the schedule of the two jobs i and j (schedule job i at time tj and job j at time
ti), the new schedule is still feasible and follows EDF scheduling policy. In order to prove
that another optimal schedule can be obtained after a finite number of the above swapping
process, we only need to show that a certain value of the schedule decreases after the swapping
process. Especially, after swapping, the value (i − ti)2 + (j − tj)2 strictly decreases since
(i − ti)2 + (j − tj)2 > (i − tj)2 + (j − ti)2. Therefore, we will eventually obtain an optimal
schedule satisfying the statement. ◀

▶ Definition 2. Let Ψ =
⋃

j∈J,s∈[0,n]{dj − s}, Φ =
⋃

j∈J,t∈Ψ,s∈[0,n] {rj + s, t + s} and
Φ(j) = {t | rj < t ≤ dj , t ∈ Φ}, ∀j ∈ J .

One would find that |Ψ| = O(n2). Also |Φ| = O(n2) since for each t ∈ Ψ we have t = dj − s

for some j ∈ J, s ∈ [0, n] and the number of possible values of dj − s + s′ for s′ ∈ [0, n] is
bounded by O(n2). The following lemma is from the work by Angel et al. [1].

▶ Lemma 3 ([1]). There always exists an optimal schedule such that
i.) each calibration starts at a time in Ψ.
ii.) ∀j ∈ J , job j finishes at a time in Φ(j).

3 Dynamic Programming Approach

In this section we introduce a dynamic programming approach to solve the problem. Assume
that the calibrations on the same machine never overlap with each other and we look for
the optimal solution which follows EDF scheduling policy. We focus on the problem within
a specific time interval [t1, t2) and consider the jobs that are released during this interval,
where t1, t2 are the possible job completion times. Lemma 1 shows a very important property
that once job j is scheduled at time slot t in the optimal solution, the remaining jobs (whose
index is less than j) could be partitioned into two groups such that they must be scheduled
during time intervals [t1, t) and [t, t2) in the optimal solution, respectively (more details in
later analysis). Therefore, we could split the problem into sub-problems. In the sub-problem,
we need to mark the calibrations that cross the boundary of the time interval [t1, t2), where
we use vectors defined in the following.

Given time slot t, some machines may be calibrated at slot t and others may not. We
use notation nul to represent the situation that the machine is not calibrated at some
time slot (nul represents NULL in programming). In order to mark the calibrations on
each machine that cover time slot t (there could be at most m such calibrations), we use
a vector γ = ⟨γ1, γ2, ..., γm⟩ to represent the starting times of these calibrations where
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γk ∈ {nul} ∪ (Ψ ∩ [t − T, t)) indicates the starting time of the calibration on machine k. Let
Γ(t) = {⟨γ1, γ2, ..., γm⟩ | γk ∈ {nul} ∪ (Ψ ∩ [t − T, t)), ∀k ∈ [1, m]} be the set of all possible
vectors, with respect to time slot t.

▶ Definition 4. Let J(j, t1, t2), ∀j ∈ J be the subset of jobs whose index is at most j and
release time is between t1 and t2, i.e., J(j, t1, t2) = {i | i ≤ j, ri ∈ [t1, t2), i ∈ J}

▶ Definition 5. Let f(j, t1, t2, q, u, v) be the minimum number of calibrations to schedule jobs
J(j, t1, t2) on m machines where u = ⟨u1, u2, ..., um⟩, u − T ∈ Γ(t1), v = ⟨v1, v2, ..., vm⟩ ∈
Γ(t2), t1 ∈ Φ, t2 ∈ Φ, q ∈ [0, m] on the condition that

i.) jobs J(j, t1, t2) are only scheduled during time interval [t1, t2).
ii.) time intervals [t1, uk) and [vk, t2) have already been calibrated on machine k, ∀k ∈ [1, m].
iii.) q other jobs (not from J(j, t1, t2)) have already been assigned to time slot t2.

In the definition, we use vector u (resp. v) to mark the calibration ending times (resp.
starting times) of the calibrations that cross the boundary of interval [t1, t2), i.e., covering
time slot t1 (resp. t2), where u − T ∈ Γ(t1) (resp. v ∈ Γ(t2) ). We use parameter q to reserve
q machines at slot t2 in order to schedule the jobs (not from J(j, t1, t2)) that are assigned to
slot t2.

We consider the starting time of job j and suppose job j is scheduled at time slot t in the
optimal schedule (refer to Figure 2). If a job from J(j − 1, t1, t2) is released before t, then
it must be scheduled before (or at) time slot t by Lemma 1. Therefore, the remaining jobs
J(j − 1, t1, t2) can be partitioned into two groups: jobs J(j − 1, t1, t) and jobs J(j − 1, t, t2).
For jobs J(j − 1, t1, t), they will not be scheduled after time t as argued, and for jobs
J(j − 1, t, t2) they cannot be scheduled before t because of the job release time. Hence the
original problem could be divided into two sub-problems. Moreover, we have to enumerate
the calibrations (i.e., the calibration starting times) on each machine that cover time slot t

in the optimal schedule, in order to schedule job j at time slot t. Specifically, we use vector
x = ⟨x1, x2, ..., xm⟩ ∈ Γ(t) to indicate the starting times of the calibrations on all machines
and correspondingly y = ⟨y1, y2, ..., ym⟩ = x + T as the calibration ending times.

...

...

t1 t2t

...

q

u vx y

j

Figure 2 An illustration for Proposition 7.

In the following, we define the operations that is related to nul.

▶ Definition 6. For any x ∈ R, we define the min and max functions min{nul, x},
min{x, nul}, max{nul, x}, max{x, nul} to be x, the operations x + nul, x − nul, nul −
nul, min{nul, nul} to be nul, and the intervals [x, nul), [nul, x) to be ∅.

We define min (or max, analogously) function on two vectors γ, λ to be β = min{γ, λ}
where βk = min{γk, λk}, ∀k ∈ [1, m] (recall that γk or λk might be nul). We define operator
+ (or −, analogously) on a vector λ and a number x to be β = λ + x where βk = λk + x.
And we define operator < (or ≤, >, ≥, analogously) to be β = (λ < x) where βk = λk if
λk ̸= nul, λk < x and otherwise βk = nul.

ISAAC 2024
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Let function δ(λ) =
∑

λk ̸=nul,k∈[1,m] 1 on vector λ be the function that indicates the
number of real values in vector λ.

▶ Proposition 7. For the case J(j, t1, t2) = ∅, we set f(j, t1, t2, q, u, v) to be 0 if at least q

machines are calibrated at time slot t2 providing u and v, and otherwise ∞. If j ̸∈ J(j, t1, t2)
we have f(j, t1, t2, q, u, v) = f(j − 1, t1, t2, q, u, v). If j ∈ J(j, t1, t2) and Φ(j) ∩ (t1, t2] = ∅,
we have f(j, t1, t2, q, u, v) = ∞. Otherwise we have f(j, t1, t2, q, u, v) =

min
t∈Φ(j)∩(t1,t2]



∞ , if t = t2, q = m

f(j − 1, t1, t2, q + 1, u, v) , if t = t2, 0 < q < m

min
cond.

δ(x)

+f(j − 1, t1, t, 1, u, v′)
+f(j − 1, t, t2, q, u′, v) , if t < t2 or q = 0

where cond. represents x ∈ Γ(t), y = x + T, u′ = max{y, u ≥ t}, v′ = min{x, v < t}.

Proof. For the base cases, if J(j, t1, t2) = ∅, no job needs to be scheduled, hence we only
need to guarantee that at least q machines are calibrated at time slot t2. If j ̸∈ J(j, t1, t2), we
would have J(j, t1, t2) = J(j − 1, t1, t2). If j ∈ J(j, t1, t2), Φ(j) ∩ (t1, t2] = ∅, it is impossible
to schedule job j during interval (t1, t2].

In the dynamic programming equation, we allow calibrations to overlap with each other
on the same machine, and we guarantee that for each time slot, the number of jobs that are
assigned to this time slot is at most the number of machines that are calibrated during this
time slot. Firstly, we try every possibility (specifically, job starting time) to schedule job j.
Secondly, we follow the scheduling policy that whenever a time slot is active, we try every
possibility of the calibrations (specifically, calibration starting times) on each machine that
cover this time slot. Depending on the time slot t where job j is scheduled, we divide the
analysis into three cases.
Case 1) t = t2, q = m. In this case, there are already q jobs assigned to time slot t2.
Therefore it is infeasible to assign job j to time slot t2.
Case 2) t = t2, 0 < q < m. In this case, job j is assigned to time slot t2. Since q > 0,
i.e., some job is already scheduled at time slot t2, by our approach the calibration decision
on time slot t2 is already made, which means that we do not need to enumerate again the
calibrations that cover time slot t2. Therefore we just schedule job j at slot t2 and recurse to
the sub-problem f(j − 1, t1, t2, q + 1, u, v) where we reserve q + 1 machines at time slot t2.
Case 3) t < t2 or q = 0. If t < t2, time slot t is not yet active as we only reserve time slot
t2 for other jobs. If t = t2, q = 0, no job is reserved at time slot t2 by definition. Therefore, in
this case time slot t is not yet active and we enumerate the calibrations that cover time slot
t, i.e., vector x ∈ Γ(t). Once we fix time slot t and vector x, we partition the remaining jobs
J(j − 1, t1, t2) into two groups: jobs J(j − 1, t1, t) and jobs J(j − 1, t, t2). Because jobs in
J(j − 1, t1, t) will not be scheduled after time t in the optimal solution by Lemma 1 and jobs
in J(j − 1, t, t2) cannot be scheduled before t because of the job release time, the two groups
of jobs must be scheduled during interval [t1, t) and [t, t2) respectively. The only issue left is
to determine the calibrations that cross the boundary of the intervals. For the calibrations
that intersect with interval [t1, t) and cover time slot t, they must come from the calibrations
with starting time x or v. Hence we define v′ = min{x, v < t} to include as many calibrated
slots on each machine as possible for interval [t1, t) and define the first sub-problem to be
f(j − 1, t1, t, 1, u, v′), in which we reserve one machine at time slot t for the schedule of job
j. Note that v′ follows the definition of the sub-problem, i.e., v′ ∈ Γ(t). Symmetrically, we
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define vector u′ = max{y, u ≥ t} to include as many calibrated slots on each machine as
possible for interval [t, t2) and we have u′ − T ∈ Γ(t). We define the sub-problem to be
f(j − 1, t, t2, q, u′, v). As we have tried every possibility of time slot t, vector x, at least one
try is the same as the optimal solution. Hence, we obtain two partial schedules from two
sub-problems respectively and then schedule job j at time slot t. Job j is feasible because
the first sub-problem has reserved a time slot for job j at slot t by definition. ◀

Time Complexity. The dynamic program has table size O(n2|Φ|2|Ψ|2m). Constructing
the solution from the sub-problems takes O(|Φ||Ψ|m) steps. In total, the running time is
O(n2|Φ|3|Ψ|3m) = O(n8+6m). When m is constant, i.e., the number of machines is constant,
our dynamic programming approach has polynomial running time.

4 When T is Constant

The algorithm in Section 3 is exponential on the number of machines (i.e., m). When m is
input and T is constant, we introduce another dynamic programming approach in this section
with polynomial running time. Since all jobs have unit processing times, the scheduling
between two different time slots is independent once the calibration scheme and the starting
time of each job are determined. That is, for a certain time slot t, a job processed on this
slot and any two available (i.e., calibrated) machines on this slot, it makes no difference to
schedule the job on either of the two machines for the schedule of any other time slot t′.
This inspires us that we do not need to distinguish machines, but only need to distinguish
calibrations with different starting times. When T is constant, we can use this to optimize
the table’s cardinality in the dynamic programming approach to a polynomial of n and m.

▶ Definition 8. Assume that the calibrations on the same machine never overlap. To mark
the status of calibrations at time slot t, we use a vector ct = ⟨ct,1, ct,2, ..., ct,T ⟩ to represent
the numbers of calibrations distinguished by the number of remaining time slots that kept
the machine calibrated, where ct,k ∈ {0, 1, 2, . . . , m} indicates the number of calibrations that
makes the machine available at time slot t, t + 1, . . . , t + k − 1.

We define function ι on vector ct and an integer x as ι(ct, x) = ct+x where ct+x,k = ct,k−x

if k − x ∈ [1, T ], and otherwise 0, ∀k ∈ [1, T ]. We define max function on two vectors γ, λ

to be β = max{γ, λ} where βk = max{γk, λk}, ∀k ∈ [1, T ].
Let C(t) = {⟨ct,1, ct,2, ..., ct,T ⟩ | ct,k ∈ {0, 1, 2, . . . , m}, ∀k ∈ [1, T ] ∧

∑T
k=1 ct,k ≤ m} be

the set of all possible vectors, with respect to time slot t. One would find |C(t)| = O(mT ).

▶ Definition 9. We define f(j, t1, t2, q, ct1 , ct2) to be the minimum number of calibrations to
schedule jobs J(j, t1, t2) on m machines where ct1 ∈ C(t1), ct2 ∈ C(t2), t1 ∈ Φ, t2 ∈ Φ, q ∈
[0, m] on the condition that

i.) jobs J(j, t1, t2) are only scheduled during time interval [t1, t2).
ii.) machines have already been calibrated according to ct1 and ct2 .
iii.) q other jobs (not from J(j, t1, t2)) have already been assigned to time slot t2.

▶ Proposition 10. For the case J(j, t1, t2) = ∅, we set f(j, t1, t2, q, ct1 , ct2) to be 0 if
there are at least q available machines on time slot t (i.e., q ≤

∑T
k=1 ct2,k), and otherwise

∞. If j ̸∈ J(j, t1, t2), we have f(j, t1, t2, q, ct1 , ct2) = f(j − 1, t1, t2, q, ct1 , ct2). If j ∈
J(j, t1, t2) and Φ(j) ∩ (t1, t2] = ∅, we have f(j, t1, t2, q, ct1 , ct2) = ∞. Otherwise we have

ISAAC 2024



20:8 Revisit the Scheduling Problem with Calibrations

f(j, t1, t2, q, ct1 , ct2) =

min
t∈Φ(j)∩(t1,t2]



∞ , if t = t2, q = m

f(j − 1, t1, t2, q + 1, ct1 , ct2) , if t = t2, 0 < q < m

min
cond.

∑T
k=1 ct,k

+f(j − 1, t1, t, 1, ct1 , ċt)
+f(j − 1, t, t2, q, c̈t, ct2) , if t < t2 or q = 0

where cond. stands for ċt = max{ι(ct1 , t − t1), ct}, c̈t = max{ι(ct2 , t − t2), ct} where
ct, ċt, c̈t ∈ C(t).

Proof. The structure of the proof is similar to Proposition 7. Beyond the base cases, we first
try every possible starting time t to schedule job j. Then we follow the scheduling policy
that whenever a time slot is active, we try every possibility of ct. Depending on the time
slot t where job j is scheduled, we divide the analysis into three cases.
Case 1) t = t2, q = m. In this case, all the available machines are already reserved, therefore
it is infeasible to assign job j to time slot t2.
Case 2) t = t2, 0 < q < m. In this case, job j is assigned to time slot t2. Since q > 0, the
calibration setting on time slot t2 is already determined, we only need to choose an unoccupied
machine for job j at slot t2 and recurse to the sub-problem f(j − 1, t1, t2, q + 1, ct1 , ct2).
Case 3) In this case, job j can be scheduled at time slot t, and time slot t is not yet active
so far. We enumerate the calibrations that cover time slot t, i.e., vector ct ∈ C(t). As argued
in Proposition 7, when job j is scheduled at time slot t, jobs J(j − 1, t1, t) and J(j − 1, t, t2)
should be scheduled during intervals (t1, t] and (t, t2] respectively. Then We determine the
calibrations that cross the boundary of the intervals. We define ċt = max{ι(ct1 , t − t1), ct}
to include all the calibrations in ct1 or ct and restrict ċt ∈ C(t) to avoid the situation where
the number of available machines exceeds m. We reserve one machine for the job j at
time slot t in the first sub-problem f(j − 1, t1, t, 1, ct1 , ċt). Symmetrically, we define vector
c̈t = max{ι(ct2 , t − t2), ct} and the second sub-problem to be f(j − 1, t, t2, q, c̈t, ct2). As
we have tried every possibility of time slot t, vector ct, at least one try is the same as the
optimal solution. ◀

Time Complexity. The dynamic program has table size O(n2|Φ|2|C|2). Constructing
the solution from the sub-problems takes O(|Φ||C|) steps. In total, the running time is
O(n2|Φ|3|C|3) = O(n8m3T ). When T is constant, our dynamic programming approach has
polynomial running time.

Connection with Section 3. When m is input, the dynamic programming approach in
Section 3 has exponential running time, while the running time of the approach in this
section is polynomial on n and m. However, this running time is exponential on T . When T

is constant, our proposed dynamic programming approach has polynomial running time.

5 PTAS

In this section, we extend the dynamic programming approach in Section 3 and present a
PTAS. In other words, for any constant ϵ > 0, we give a (1 + ϵ) - approximation solution with
m machines. The high level idea of the PTAS is to compress the vectors by decreasing the
number of possible distinct starting times of calibrations so that the dynamic programming
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has polynomial running time. We propose a compression method by delaying the calibrations
in the optimal solution and prove that in the approximation solution, for each time slot t the
corresponding vector set Γ(t) has polynomial cardinality. More specifically, we prove that
given (1 + ϵ)m machines there exists a (1 + ϵ) - approximation solution such that for any
time slot t, the number of distinct starting times (and ending times) of the calibrations that
cover time slot t is at most 2⌈1/ϵ⌉ + 1. At last, we use a modified dynamic programming
algorithm to find that (1 + ϵ) - approximation solution without using the extra ϵm machines.

τ1 τ1 + T

OPT

PTAS

extra calibrations

Figure 3 An illustration for Lemma 11 to show the transformation of the calibrations in the
optimal solution. For each group of calibrations, after delaying the calibrations the affected jobs are
depicted within a rectangle. We move the affected jobs in each rectangle into the extra machines,
without changing the job starting time. As the time interval covered by each rectangle is disjoint
with other rectangles, the new schedule of the jobs from two rectangles is independent of each other.

▶ Lemma 11. There exists a (1 + ϵ) - approximation solution on (1 + ϵ)m machines such
that for any time slot t, the number of distinct starting times (and ending times) of the
calibrations that cover time slot t is at most 2⌈1/ϵ⌉+1, and there are at most m jobs scheduled
at time slot t.

Proof. Consider the optimal solution that satisfies Lemma 1 and Lemma 3, in which no
two calibrations overlap with each other on the same machine. We show how to transform
the optimal solution into another solution satisfying the statement, shown in Figure 3. In
our approach, we maintain the schedule of the jobs as in the optimal schedule and only
change the schedule of calibrations. Hence, in the new schedule there are at most m jobs
scheduled at any time slot. Assume that in the optimal solution the calibrations are sorted
in non-decreasing order of their starting times (regardless of the machines). We define block
to be the set of consecutive calibrations satisfying the property that the largest difference of
their starting times is less than T and the set is maximal in the sense that adding one more
calibration will violate the property. We partition the calibrations in the optimal solution
into many disjoint blocks starting from the first calibration. The transformation works in
many phases where in each phase we work on one block.

Suppose in the current phase the block contains l calibrations. First, we will delay these
l calibrations so that the number of distinct starting times of these calibrations is at most
⌈1/ϵ⌉ (skip the phase and do nothing if l ≤ ⌈1/ϵ⌉). This process will cause the infeasibility
of some jobs because of the delay of calibrations. We construct a feasible schedule of jobs by
creating an extra of ⌊ϵl⌋ calibrations on the extra ϵm machines and rescheduling the affected
jobs on the extra machines.

Let τi be the starting time of the i-th calibration in the block, we have τ1 ≤ τ2 ≤ ... ≤
τl < τ1 + T . Note that l ≤ m because each of these calibrations covers time slot τ1 + T .
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Step 1. (Partition) We partition the calibrations in the block into ⌈1/ϵ⌉ groups such that
each group contains at most ⌈ϵl⌉ consecutive calibrations. One would find that the partition
is feasible as ⌈1/ϵ⌉ · ⌈ϵl⌉ ≥ l. Note that the maximum calibration starting time in one group
is no larger than the minimum calibration starting time in the next group.

Step 2. (Delay) For each group of calibrations, let τ be the latest calibration starting time,
then we delay the calibrations in this group so that they have identical starting time τ .

Step 3. (Augment) We add an extra group of ⌊ϵl⌋ calibrations once with identical starting
time τ1 on the extra ϵm machines.

Step 4. (Transform) For the calibrations that are delayed in each group, we reschedule
the corresponding affected jobs on the extra machines, without changing the starting time of
any job.

Analysis. We show that the new schedule of jobs is feasible. First, we claim that the number
of the affected jobs which start at a time t ∈ [τ1, τ1 + T ) in the optimal solution is at most
⌈ϵl⌉ − 1. In total we have created an extra of ⌊ϵl⌋ calibrations. For each group of calibrations,
let ta, tb be the smallest and largest calibration starting time, respectively. There is at least
one calibration that is not delayed, hence we delay at most ⌈ϵl⌉ − 1 calibrations in this group.
The affected jobs caused by the delay of the calibrations in this group must have job starting
time within [ta, tb). In other words, in the optimal solution any affected job that starts at a
time within [ta, tb) must be scheduled in a calibration from this group (i.e., not from other
groups), because the maximum calibration starting time in one group is no larger than the
minimum calibration starting time in the next group by Step 1. Therefore, ∀t ∈ [τ1, τ1 + T ),
the total number of the affected jobs which start at time t is at most ⌈ϵl⌉ − 1, because we
delay at most ⌈ϵl⌉ − 1 calibrations in this group. Since ⌈ϵl⌉ − 1 ≤ ⌊ϵl⌋, we conclude that the
new schedule of jobs is feasible.

Now, we prove the lemma. Suppose in total there are b phases and let τ ′
1, τ ′

2, ..., τ ′
b be the

starting times of the extra calibrations in each phase. Then we have τ ′
i+1 − τ ′

i ≥ T, ∀i ∈ [1, b)
according to the above process. In one phase, we process l calibrations and we create ⌊ϵl⌋
extra calibrations, which implies that the final solution is (1 + ϵ)-approximation since we
never consider a calibration twice in different phases. Moreover Lemma 3 holds for the new
solution because we do not change the starting time of any job and the starting time of
the extra calibrations in each phase is the same as one of the calibrations from the block in
the optimal solution. And note that in the new solution, calibrations might overlap with
each other on the same machines. In each phase, we partition the calibrations into ⌈1/ϵ⌉
groups and the calibrations in each group have identical starting time, hence the number
of distinct starting times of the calibrations is at most ⌈1/ϵ⌉ + 1 in each phase, including
the extra calibrations. In other words, for each interval [τ ′

i , τ ′
i+1) the number of distinct

starting times of the calibrations that start during this interval in the new solution is at most
⌈1/ϵ⌉ + 1. Consider an arbitrary time slot t from [τ ′

i , τ ′
i+1) and the calibrations that cover

slot t in the new solution. These calibrations must have starting times in (τ ′
i−1, τ ′

i+1) since
τ ′

i+1 − τ ′
i−1 ≥ 2T . Therefore, the total number of distinct starting times of the calibrations

that cover time slot t is at most 2⌈1/ϵ⌉ + 1 (the extra calibrations in phase i − 1 will not cover
time slot t). Also, the total number of distinct ending times of the calibrations that cover
time slot t is at most 2⌈1/ϵ⌉ + 1, because all calibrations have identical length. Eventually,
the lemma is proved. ◀
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Vector Compression

Lemma 11 shows that for each optimal solution, there is a corresponding (1+ϵ)-approximation
solution on (m + ϵm) machines with the property that the number of distinct starting times
of the calibrations that cover each time slot t is bounded by a constant. In the following, we
propose a method to find a (1 + ϵ)-approximation solution with m machines, which is based
on the dynamic programming in the previous section. We first propose the algorithm with
(m + ϵm) machines (which we refer to as resource-augmentation version), while guaranteeing
that for any time slot there are at most m jobs scheduled. Note that the extra ϵm machines is
due to the extra additional calibrations as shown in Figure 3. Therefore, we then transform the
resource-augmentation solution to a solution that only requires m machines by rescheduling
the calibration without changing the schedule of jobs.

Let h = 2⌈1/ϵ⌉ + 1, m′ = m + ⌊ϵm⌋ and we assume m′ < n (a trivial solution could be
found when the optimal schedule uses m′ machines with m′ ≥ n). Previously in Section 3,
for the calibrations that cover time slot t, we use vector γ = ⟨γ1, γ2, ..., γm⟩ ∈ Γ(t) to mark
the calibration starting time on each machine. Similar to Section 4, in the modified dynamic
programming for PTAS, we discard the information of the mapping from calibrations to
machines and only mark the starting times of the calibrations that cover time slot t. In other
words, for each calibration, we do not need to know the corresponding machine on which the
calibration takes effect. We focus on the solution on m′ machines and use configurations to
mark the calibration starting times.

▶ Definition 12. We define a configuration to be a pair of vectors ⟨α, η⟩ where α =
⟨α1, α2, ..., αh⟩, η = ⟨η1, η2, ..., ηh⟩ and for each i ∈ [1, h], αi ∈ {nul} ∪ Ψ indicates the
starting time of a calibration, ηi ∈ [0, m′] indicates the number of the calibrations that share
the same starting time αi. We define A = {⟨α1, α2, ..., αh⟩ | αi ∈ {nul}∪Ψ, ∀i ∈ [1, h]} to be
the set of all possible vectors α. Given time slot t, we define A(t) = {⟨α1, α2, ..., αh⟩ | αi ∈
{nul} ∪ (Ψ ∩ [t − T, t)), ∀i ∈ [1, h]}, where αi indicates the starting time of a calibration
which covers time slot t. Let B = {η |

∑h
i=0 ηi ≤ m′, ηi ∈ [0, m′], ∀i ∈ [1, h]} be the set of all

possible vectors η.

In total we have at most nh|Ψ|h configurations as |A| ≤ |Ψ|h and |B| ≤ (m′ +1)h ≤ nh, which
implies that the total number of possible configurations is polynomial in n. Given time slot t,
and two configurations ⟨α̇, η̇⟩ and ⟨α̈, η̈⟩, we use ∪t as the notation of the process that merges
these two configurations into a new configuration ⟨α, η⟩ where ⟨α, η⟩ = ⟨α̇, η̇⟩ ∪t ⟨α̈, η̈⟩ such
that each calibration from the new configuration covers time slot t. In the merging process,
we first identify the distinct starting times of the calibrations from the two configurations that
cover time slot t, then for each distinct starting time, we count the number of calibrations
that share the same starting time. We guarantee that α ∈ A(t) and η ∈ B for the new
configuration ⟨α, η⟩ after the merging process. In other words, we will discard the new
configuration if it is not valid (either the number of distinct calibration starting times is
beyond h or η ̸∈ B).

▶ Definition 13. We define f#(j, t1, t2, q, ⟨α̌, η̌⟩, ⟨α̂, η̂⟩) to be the minimum number of extra
necessary calibrations to schedule jobs J(j, t1, t2) on m′ machines where j ∈ J, t1 ∈ Φ, t2 ∈
Φ, q ∈ [0, m], α̌ ∈ A(t1), α̂ ∈ A(t2), η̌ ∈ B, η̂ ∈ B on the condition that

i.) jobs in J(j, t1, t2) are only scheduled during time interval (t1, t2].
ii.) calibrations indicated by configurations ⟨α̌, η̌⟩ and ⟨α̂, η̂⟩ have already been selected to

be assigned to machines.
iii.) q other jobs (not from J(j, t1, t2)) have already been assigned at time slot t2.
iv.) there are at most m jobs scheduled at any time slot.
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In dynamic programming, we allow the overlap of calibrations and we guarantee that at each
time slot, we assign at most m jobs into this slot.

▶ Proposition 14. Let F # = f#(j, t1, t2, q, ⟨α̌, η̌⟩, ⟨α̂, η̂⟩). For the base case J(j, t1, t2) = ∅,
we set F # to be 0 if time slot t2 is covered by at least q calibrations given by config-
urations ⟨α̌, η̌⟩ and ⟨α̂, η̂⟩, otherwise ∞. If j ̸∈ J(j, t1, t2), we have F # = f#(j −
1, t1, t2, q, ⟨α̌, η̌⟩, ⟨α̂, η̂⟩). If j ∈ J(j, t1, t2) and Φ(j) ∩ (t1, t2] = ∅, we have F # = ∞.
Otherwise, we have F # =

min
t∈Φ(j)∩(t1,t2]



∞ , if t = t2, q = m

f#(j − 1, t1, t2, q + 1, ⟨α̌, η̌⟩, ⟨α̂, η̂⟩) , if t = t2, 0 < q < m

min
cond.

∑h
i=0 ηi

+f#(j − 1, t1, t, 1, ⟨α̌, η̌⟩, ⟨α̇, η̇⟩)
+f#(j − 1, t, t2, q, ⟨α̈, η̈⟩, ⟨α̂, η̂⟩) , if t < t2 or q = 0

where cond. stands for ⟨α̇, η̇⟩ = ⟨α, η⟩ ∪t ⟨α̂, η̂⟩, ⟨α̈, η̈⟩ = ⟨α, η⟩ ∪t ⟨α̌, η̌⟩ where α, α̇, α̈ ∈
A(t) and η, η̇, η̈ ∈ B.

Proof. Similar to Proposition 7, we maintain the invariant that whenever a time slot becomes
active (i.e., we reserve a time slot for a job), we enumerate all the calibrations that cover
this time slot (excluding the calibrations that have already been selected). For example, for
time slot t which is not active at the moment, even some calibrations from configurations
⟨α̌, η̌⟩, ⟨α̂, η̂⟩ might already cover time slot t. We enumerate the remaining calibrations that
could cover time slot t (i.e., configuration ⟨α, η⟩ with α ∈ A(t), η ∈ B) when we plan to
assign a job to time slot t. Note that the actual calibrations that cover time slot t come from
configurations ⟨α̌, η̌⟩, ⟨α̂, η̂⟩ and ⟨α, η⟩. In the dynamic programming, we enumerate the
time slot t in which job j ∈ J(j, t1, t2) is scheduled in the optimal schedule.
Case 1) If t = t2, q = m, we cannot assign job j to time slot t because there are already
other m jobs assigned to time slot t.
Case 2) t = t2, 0 < q < m. In this case, time slot t has already become active since
q > 0. Hence, the calibrations that cover time slot t2 has already been enumerated (in other
words, we do not need to enumerate it again). Also, job j could be assigned to time slot t2
because q < m. Therefore, we just assign job j to time slot t and reduce to the sub-problem
f#(j − 1, t1, t2, q + 1, ⟨α̌, η̌⟩, ⟨α̂, η̂⟩). Especially, if q = 0, no job has been assigned to time
slot t, i.e., time slot t is not active, then we have to enumerate the calibrations that cover
time slot t, which is handled in Case 3). If t < t2, time slot t is not active because we only
reserve time slot t2 for the q other jobs.
Case 3) In this case, job j can be scheduled at time slot t, and no job has been assigned
to time slot t so far. We enumerate the calibrations that cover time slot t, which is the
configuration ⟨α, η⟩ with α ∈ A(t), η ∈ B. As argued in Proposition 7, when job j is scheduled
at time slot t, jobs J(j − 1, t1, t) and J(j − 1, t, t2) should be scheduled during intervals (t1, t]
and (t, t2] respectively. Hence we reduce to sub-problems f#(j − 1, t1, t, 1, ⟨α̌, η̌⟩, ⟨α̇, η̇⟩) and
f#(j − 1, t, t2, q, ⟨α̈, η̈⟩, ⟨α̂, η̂⟩) where ⟨α̇, η̇⟩ = ⟨α, η⟩ ∪t ⟨α̂, η̂⟩, ⟨α̈, η̈⟩ = ⟨α, η⟩ ∪t ⟨α̌, η̌⟩ by
reserving a calibrated machine at time slot t for job j. Because we enumerate all possible
configurations ⟨α, η⟩ with α ∈ A(t), η ∈ B, we are able to reach the schedule that is the
same as the optimal schedule. ◀

Time complexity. The modified dynamic program has table size O(n2|Φ|2(|A||B|)2). Con-
structing the solution from the sub-problems takes O(|Φ||A||B|) steps. In total the time
complexity is O(n2|Φ|3(|A||B|)3) = O(n2|Φ|3n3h|Ψ|3h) = O(n17+18⌈1/ϵ⌉).
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▶ Lemma 15. There exists a (1 + ϵ) - approximation solution on m machines.

Proof. By Lemma 11 and the algorithm in Proposition 14, we can obtain a (1 + ϵ) -
approximation solution σ on m′ machines while guaranteeing that there are at most m jobs
scheduled at any time slot. In the following, we transform σ to an (1 + ϵ) - approximation
solution σ′ on m machines, without changing the schedule of jobs. In solution σ, we consider
the earliest time slot t such that more than m machines are calibrated at time slot t.
Case 1) If no such time slot t exists, we then assign the calibrations to m machines via
Round-Robin method, as proposed in [3], and obtain a feasible solution on m machines.
Case 2) Otherwise, there must be some calibration starting at time t − 1, we then delay
this calibration by one more time slot. Note that jobs are still feasible since there are at
most m jobs scheduled at time slot t. We repeat the above process until Case 1) occurs and
Case 1) eventually will occur since the sum of the calibration starting time is increasing after
each delay operation. Thus, we finish the proof. ◀

Connection with Section 4. Note that in Section 3 we directly record the calibration times
on each machine in the dynamic program, while in Section 4 and this section we propose
different methods for vector compression to ensure a polynomial space of the proposed
dynamic programs. Specifically, in Section 4, for a fixed time slot t, the number of possible
distinct calibration starting times within interval [t, t + T ) is constant since T is constant,
instead, in this section when T is input, we apply the calibration delaying operation to ensure
the polynomial number of distinct calibration starting times within interval [t, t + T ).

6 Conclusion

We study the scheduling problem with calibrations on multiple machines where we consider
the schedule of unit-time processing jobs with release times and deadlines such that the total
number of calibrations is minimized. We propose two dynamic programming approaches to
solve the problem with running time O(n8+6m) and O(n8m3T ) respectively. Thus when m is
constant or T is constant, we can give an algorithm of polynomial running time. Moreover,
we present a PTAS, which has running time O(n17+18⌈1/ϵ⌉). This approach very likely works
only on the case that the jobs have identical processing time. It would be worth challenging
to tackle the open problem proposed by Bender et al. [3] about the complexity status on
multiple machines with jobs of unit processing times.
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